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INTRODUCTION

In previous papers [1,2] we have described an explicit finite element
solution procedure for the compressible Euler and Navier-Stokes equations. The
approach was a finite element equivalent of a two-step Lax-Wendroff scheme and
was implemented on unstructured triangular or tetrahedral grids. An important
feature of the work was the use of adaptive mesh refinement methods for the
solution of steady state problems in 2D, using error indicators based upon
interpolation theory.

In this paper, some recent developments in the extension of this approach
are considered. We will describe how the basic solution procedure can be
modified in a straightforward manner to produce a high resolution scheme on
unstructured grids. This is accomplished by utilizing, in a finite element
context, Zalesak's [3] multidimensional extension of the flux corrected transport
(FCT) ijdeas of Boris and Book [4]. The problem of triangular mesh generation
will be addressed and the adaptive mesh approach will be widened to handle 2D
problems involving strongly transient phenomena. This will be implemented by
allowing adaptive refinement and derefinement of the mesh as the solution
proceeds. Finally, it will be demonstrated how directional refinement procedures
can be incorporated for the efficient computation of steady 2D flows involving
significant 1D features.

BASIC ALGORITHM

The basic solution algorithm will be briefly described for the two
dimensional Navier-Stokes equations written in the conservative form

3l oFf.
e (j=1,2) (1)

where U is the vector of conservation variables and Ej and Qj denote the
advective and viscous flux vectors respectively. A time-stepping scheme for this

(NACA=CE=-114392)  ADAPTIVE EINITL SLiMENT
rFUX CUPRECTLD TWANSPOART TECHNINUES FDR CED
(dales univey 13 o

NIU=-T0575

uncl.is
N3/34  0270u24



equation can be‘ developed, in an operator-split fashion, by treating the
diffusion terms in an explicit manner and the advective terms in the Lax-Wendroff
fashion [5]. The result is that

oF" 2 o oG
mdl _oomo_ -j, AtT 0 m "=~k =J
et Rl ey (2)

where a superscript m denotes an evaluation at time t = the thmel = tp + At and
dEj

The sbatia] domain, Q, is discretized using 3-noded linear triangular elements
and a weighted residual [6] form of equation (2) is considered. The resulting
integrals are evaluated exactly (in a 2-step fashion by firstly calculating an

element level approximation to gm+1/2 [7]), leading to an equation

w et = (4)
where M 1is the consistent mass matrix, égﬂ is the vector of changes in the
nodal values of U over the timestep and the superscript H is introduced for use
later. For the simulation of transient flows, this equation system can be solved
iteratively and explicitly [8] and the method coupled with a domain splitting
technique [9] to produce an efficient computational procedure. For steady flows,
Tocal time steps are employed and equation (4) is replaced by the explicit scheme

T (5)

where Ml is the Tumped diagonal mass matrix. It should be noted that , in 10
equation (5) reduces to the well-known finite difference scheme of Burstein [10].

+ :
For problems involving strong shocks, the solution Qm 1 is smoothed, .by
the application of artificial viscosity [11], before proceeding to the next time
step. ' '

FCT EXTENSION

A more robust solution scheme, giving better resolution of flow discontinu-
ities, can be produced by adding an FCT procedure to the above process.
Erlebacher [12] and Parrott and Christie [13] have demonstrated how Zalesak's [3]
multidimensional extension of the FCT algorithm of Boris and Book [4] can be
implemented on triéngular grids., The idea is to combine a high order scheme with
a low order scheme in such a way that the high order scheme is employed in
regions where the flow variables vary smoothly, whereas the low order scheme is
favored in those regions where the variables vary abruptly. The low order scheme



(a) (b) (c) (d)
Figure 1

Mach 8 flow past a cylinder. (a) Mesh (b) Velocity vectors (c) Pressure
contours (d) Density contours.

Figure 2

Definition of the mesh parameters 6, s and a.



should give monotonic results for the problem of interest.

The solution method of equation (4) will be used as a high order scheme and
a high order solution, QH, after an time step can be defined by

(6)

Similarly, a low order solution, gL, is defined by

(7

where the low order increment is calculated as

st = sut 4 p (8)

and the smoothing term D 1is given by
D=C M (M-m)u" (9)

where CL is a constant. This form for the smoothing is suggested by the fact
that at node i on a uniform grid in 1D
-1

miy _Mm  _ oM
[Mp™ (- mp) U], =(U3,, - Ul + 9?-1)/6 (10)

It should be noted that equations (6-8) can be re-arranged to give
U= U +0D (11)

The new solution is computed according to

i ST (12)

*
where D is obtained by writing the element contributions to D, in such a way
+ .
as to attempt to ensure that, !m ! is free from extrema not found in Qm or QL

[14, 15].

The numerical performance of this FCT scheme is illustrated in Figure 1
which shows the solutions obtained for the problem of Mach 8 flow past a
cylinder.

Further generalizations of FCT are possible which offer interesting
possibilities for future investigation [16].
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Sequence of meshes produced using mesh

Detail of the initial mesh produced for the analysis of a store separation

enrichment and the corresponding pressure contours.

'Regular shock reflection at a wall.
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MESH GENERATION

TAhe use of triangular elements in 2D means that computational domains of
complex geometrical shape can be readily modelled and a variety of triangular
mesh generation algorithms for planar domains are available [17, 18], The
approach to mesh generation to be outlined here begins by defining the boundaries
of the solution domain in terms of Bezier polynomials and' then covering this
domain with a coarse ‘background' grid of 3 noded linear triangles. This grid is
normally constructed by hand and the only geometrical req‘uire}nent imbbse’d is that
the solution domain should be completely covered by this grid i.e. the background
grid is not required to approximate the geometry. At each node on the background
grid, we specify the values of mesh parameters 6, s, a. During the mesh
generation process,. the local values of these parameters for the mesh being
generated will be obtained by interpolation over the background grid. For the
exact definition of these mesh parameters, it is useful to refer to Figure 2
which shows a typical generated triangle. The triangle has llength s6 in the
direction of a and length & in the direction at right angles to a. We
call & the local node spacing, s the local degree of stretching and «a the
local direction of stretching. The full flexibility of the mesh generator need
not be used to construct an initial mesh for a gi:ven problem, but it will be used
in an adaptive mesh process to be described later.. In paf*ticu]ar, if a uniform
distribution of & is required, with no stretching, the background grid need
only consist of a single element. The mesh generation process begins with the
ptacing of the boundary nodes. The lines joining successive boundary nodes form
the initial generation"front', which is the collection of sides available to
cdnstruct triangles. One side in the front is chdsen, and a triangle is
constructed with values of &, s and a interpolated from the background grid.
The front is updated and the process is repeated until the front is empty, at
which stage the whole solution domain has been discretized. Full details of the

mesh generation process can be found elsewhere [19].

The performance of the mesh generator is demonstrated in Figure 3, which
shows a detail of the initial mesh produced for the analysis of a store separa-
“tion problem. This p'roblem ‘has been used to demonstrate the full power of the
generator by directly coupling it to the transient solution procedure and using
it to locally Aregén_eratethe mesh as the store moves through the flow field [20].

ADAPTIVE MESH STRATEGIES

‘Adapfive mesh strategies have a major role to play in the development of
efficient so]dtion_ techniques for large problems in CFD. The ultimate objective
is the ability to solve 'a given problem to a prescribed accuracy with the optimum
number of grid points and, although this goal has not yet been met, major steps

in this direction have already been made,
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Shock impinging on a half-cylinder
(a) t=0, 2554 elements, 1335 points
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| Figure 5 (cont)

(b) t=0.3, 9057 elements, 4626 points
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Mesh movement technique can be contemplated [21, 22] but suffer from the
drawback that the accuracy of the final computation can be limited by the
structure and resolution of the initial grid. Mesh enrichment algorithms for
steady problems [23, 24] generally advance the solution towards steady state on
an initial coarse grid and then obtain an estimation of the error in each
computational cell by using an error indicator. For the Euler or Navier-Stokes
equation systems, the error indication is normally based upon a key-variable egq.
the density is a popular choice for the Euler equations. Ihdicators.baSe'd upon
interpolation theory can be used, with equi-distribution of the error being the
object of the refinement process [25]. The cells exhibiting largest error are
automatically subdivided and the computation proceeds, with this process being
repeated until the analyst is satisfied with the solution qdah’ty.

The mesh enrichment approach works well in practice [7] and Figure 4 shows
the solution of problem of regular shock reflection at a wall which has been
solved in this manner. This so]utipn was produced using the basic solution

algorithm described above.

The extension of the mesh enrichment concepts to the solution of transient
problems has been demonstrated recently [26]. . Now, as the flow features of
interest are moving through the solution domain, for economy of computation mesh
enrichment has to be combined with the capability of derefining the mesh in
regions where the error indication is small. This work has produced a highly
vectorizable algorithm, with low storage requirements, and with the ability to
recover the original grid when the flow feature of interest has passed. The
performance of the algorithm is shown in Figure 5 which displays the computed FCT
solution for the problem of a Mach 10 shock impinging upon a ha]f—cy]inder. The
solutions are depicted at three selected times during the transient.

A drawback of the mesh enrichment approach is that it provides a uniform
Tocal mesh refinement, ~wher‘eas many flow features of interest are essentially
one-dimensional in 'character. This suggests that directional refinement
tecﬁ‘niques could be combutationa]]y more efficient and work in this area has
already begun. If element error indicators are replaced by indicators along
.e’lement sides [27], directional refinement for steady problems can be achieved,
along with derefinement. This is illustrated in Figure 6 which again shows the
solution obtained for  the problem of regular shock‘ reflection at a wall using the
basic solution a‘lgorithm'.' An alternative approach, is to use the mesh generator
descm;bed earlier to ‘regenerate the mesh based upon information provided by the, -
computed s~o]'L_A1t1'on on the current mesh [19]. Figure 7 shows the problem of Mach
25 flow past a blunt body at an angle of attack of 20° which has been solved
using FCT in this mannér.with a sequence of three grids.

<
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ngure 6

Regular shock reflection at a wall. Sequence of meshes produced using
directional refinement and the corresponding pressure contours.
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Figure 7

Mach 25 flow past a blunt body at 20° angle of attack. Sequence of meshes
produced by adaptive mesh regeneration and the corresponding density

contours.
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